如何在初中几何教学中渗透数学思想

如何在初中几何教学中渗透数学思想

数学思想方法是将数学知识转化为数学能力的桥梁,是解决数学问题的学科核心。现实中许多学生和教师觉得数学是一门枯燥无味的学科,老师教得很累,学生学得很辛苦,到头来还是成绩很差,这主要是在教学中没有注重数学思想的渗透,学生没有领悟和利用数学思想方法去解决问题。在初中数学教学中如何渗透数学思想方法,提高教学质量,成为一个探究内容。

一、初中数学思想方法

在初中数学蕴含着多种思想方法,但最基本的数学思想方法是函数与方程、数形结合、分类讨论、问题转化几种思想方法。

1.函数与方程思想

函数思想是指变量与变量之间的一种对应思想。方程思想则指把研究数学问题中已知量与未知量之间的数量关系,转化成方程或方程组等数学模型。例如:某工程队要招聘甲、乙两种工种的工人700人,甲、乙两种工种的工人的月工资分别为800元和1200元,现要求乙种工种的工人数不少于甲种工种人数的3倍,问甲、乙两种工种各招聘多少人时,可使得每月所付的工资最少?

2.代数与图形结合思想

代数与图形结合思想就是常说的数形结合思想,是数学中最古老和最普遍一种思想方法,数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”即通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的。例如:如图所示:初中数学教学中如何渗透数学思想方法 <wbr>黄家超比较a,-a,b,-b的大小 简析:在数轴上指出-a,-b两个数表示的点,四数大小关系就一目了然。再如:有一十字路口,甲从路口出发向南直行,乙从路口以西1500米处向东直行,已知甲、乙同时出发,10分钟后两人第一次距十字路口的距离相等,40分钟后两人再次距十字路口距离相等,求甲、乙两人的速度。 简析:画出“十字’图,分析两人在10分钟、40分钟时的位置,有图分析列出方程组。

3.数学分类讨论思想

初中数学课本中有不少定理、公式法则、练习题,都需要我们去分类讨论,在教学这些内容时,应有有意识不断强化学生分类讨论的思想,让学生认识到这些问题,只有通过分类讨论后,得到的结论才是完整的、正确的,如不分类讨论,就很容易出现遗漏或错误。在解题教学中,通过分类讨论还有利于帮助学生概括,总结出规律性的东西,从而加强学生思维的条理性,缜密性。例如学习有理数后,对字母a与0的大小比较,还有一次函数y=(k-1)x+b的图像分布情况,需要进行分类讨论。

4.问题的转化思想

转化思想也称化归思想,它是指将未知的,陌生的,复杂的问题通过演绎归纳转化为已知的,熟悉的,简单的问题,从而使问题顺利解决的数学思想。三角函数,几何变换,因式分解等数学理论无不渗透着转化的思想。常见的转化方式有:一般 特殊转化,等价转化,复杂 简单转化,联想转化,类比转化等。如二元一次方程组,三元一次方程组的解决实质就是化为已学过的一元一次方程。

二、在教学中渗透数学思想方法的途径

在数学教学的每一个知识环节里都蕴含数学思想方法,通过多种途径,激发学生的学习兴趣,渗透数学思想方法,提高学生学习效率。

1.在探究知识过程中,注重渗透数学思想方法

新课标要求,教学注重学生的知识形成过程,特别是定理、性质、公式的推导过程和例题的求解的过程,基本数学思想和数学方法都是在这个过程中形成和发展的,因而教师在讲授概念、性质、公式的过程中应重视推导过程,知识生成发展中把握时机不断渗透相关的数学思想方法,让学生在掌握表层知识的同时,又能领悟到深层数学思想方法,从而使学生思维产生质的飞跃。在教学过程中要引导学生主动参与结论的探索、发现、推导过程,搞清其中的因果关系,领悟它与其它知识的关系,让学生亲身体会创造性思维活动中所经历和应用到的数学思想和方法。

2. 通过范例和解题教学,综合运用数学思想方法

教师在教学中,对例题的认真分析,思考如何指导学生在范例中培养数学思想。在教学时,教师做好解题和反思活动,每次完成一个数学问题和范例就要向学生总结归纳解题方法,形成成数学思想,重视解决数学问题的过程,运用数学思想方法在解题途径中发生联想和转化,而初中数学新教材中,设计许多典型范例,每年中考题目中也出现很多优秀题目,教师善于选择具有启发性和创造性的题目进行练习,在对这些问题的分析和思考的过程中展示数学思想和教学方法,提高学生的解题思维能力。

3.及时小结逐步内化数学思想方法

数学思想是隐含在教材数学知识体系中,一个内容可蕴含多种不同的数学思想方法,常常在许多不同的基础知识之中运用同一数学思想方法,教师在讲解一道题目后,要揭示解题思路,涉及到的知识点和用到的思想方法,也可以鼓励学生谈谈自己的解题的思维过程,教师随后出一些相关题目给学生以进行强化刺激,让学生学会归纳、概括数学思想方法,在学生的脑海里有意识地内化数学思想,促使学生认识从感性到理论性的飞跃。

4.在解决问题过程中,不断加深数学思想方法

在教学中,往往出现学生当时听懂了,但是课后解题,特别是遇到新题就无所适从,其原因就是教师在教学中,拿到题目就把题目解答出来,遇到同类题目就照旧机械操作,学生感到厌烦疲劳,因此,在探究数学问题中,引导学生学会思考,从问题中真正领悟蕴含于数学问题中的思想方法。

数学题海无边,数学的思想方法却有限。我们教学中,对数学基础知识要强化巩固,过程要渗透和掌握基本的数学思想方法,学生会用方法解决问题。利用好教材,认真分析例题的编写意图,精选范例,在教师和学生的教与学的活动中,渗透和归纳数学思想方法,把学习的数学知识转化成学习数学的能力,让学生能轻松、愉快地学习数学,提高数学成绩。

 学数学,基本功最重要,就如同你想练习武功,最早就是从扎马步开始,基础越扎实,可能达到的高度就越高;也如同盖楼一样,根基扎的深,扎实,楼才可能稳固。而数学思想,也是这基本功中的一部分。做题不如总结规律,总结规律的意义就是在总结数学思想,我特意将初中常见的17中思维方式总结出来,希望对大家有帮助!

 初中数学思维方法

 1、对应思想方法

 对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线上的点(数轴)与表示具体的数是一一对应。

 2、假设思想方法

 假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。

 3、比较思想方法

 比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。

 4、符号化思想方法

 用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律、公式、等。

 5、类比思想方法

 类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。

 6、转化思想方法

 转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲?乙=甲?1/乙。

 7、分类思想方法

 分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。又如三角形可以按边分,也可以按角分。不同的分类标准就会有不同的分类结果,从而产生新的概念。对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。

 8、集合思想方法

 集合思想就是运用集合的概念、逻辑语言、运算、图形等来解决数学问题或非纯数学问题的思想方法。小学采用直观手段,利用图形和实物渗透集合思想。在讲述公约数和公倍数时采用了交集的思想方法。

 9、数形结合思想方法

 数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。另一方面复杂的形体可以用简单的数量关系表示。在解应用题中常常借助线段图的直观帮助分析数量关系。

 10、统计思想方法

 小学数学中的统计图表是一些基本的统计方法,求平均数应用题是体现出数据处理的思想方法。

 11、极限思想方法

 事物是从量变到质变的,极限方法的实质正是通过量变的无限过程达到质变。在讲?圆的面积和周长?时,?化圆为方?化曲为直?的极限分割思路,在观察有限分割的基础上想象它们的极限状态,这样不仅使学生掌握公式还能从曲与直的矛盾转化中萌发了无限逼近的极限思想。

 12、代换思想方法

 它是方程解法的重要原理,解题时可将某个条件用别的条件进行代换。如学校买了4张桌子和9把椅子,共用去504元,一张桌子和3把椅子的价钱正好相等,桌子和椅子的单价各是多少?

 13、可逆思想方法

 它是逻辑思维中的基本思想,当顺向思维难于解答时,可以从条件或问题思维寻求解题思路的方法,有时可以借线段图逆推。如一辆汽车从甲地开往乙地,第一小时行了全程的1/7,第二小时比第一小时多行了16千米,还有94千米,求甲乙之距。

 14、化归思维方法

 把有可能解决的或未解决的问题,通过转化过程,归结为一类以便解决可较易解决的问题,以求得解决,这就是?化归?。而数学知识联系紧密,新知识往往是旧知识的引申和扩展。让学生面对新知会用化归思想方法去思考问题,对独立获得新知能力的提高无疑是有很大帮助。化归的方向应该是化隐为显、化繁为简、化难为易、化未知为已知。

 15、变中抓不变的思想方法

 在纷繁复杂的变化中如何把握数量关系,抓不变的量为突破口,往往问了就迎刃而解。如:科技书和文艺书共630本,其中科技书20%,后来又买来一些科技书,这时科技书占30%,又买来科技书多少本?

 16、数学模型思想方法

 所谓数学模型思想是指对于现实世界的某一特定对象,从它特定的生活原型出发,充分运用观察、实验、操作、比较、分析综合概括等所谓过程,得到简化和假设,它是把生活中实际问题转化为数学问题模型的一种思想方法。培养学生用数学的眼光认识和处理周围事物或数学问题乃数学的最高境界,也是学生高数学素养所追求的目标。

 17、整体思想方法

 对数学问题的观察和分析从宏观和大处着手,整体把握化零为整,往往不失为一种更便捷更省时的方法。

 初中数学学什么?

 主要考查具体的?数?与?形?,以及抽象的?函数?

 ?数实数、代数式、代数方程

 ?形角与线、三角形、四边形、多边形、圆

 ?函数正反比例函数、一次函数、二次函数

 这三者之间,知识相连,数形互通

 环环相扣,无懈可击

本文来自作者[秋易]投稿,不代表葡萄号立场,如若转载,请注明出处:https://zputao.com/pu/5322.html

(1)
秋易的头像秋易签约作者

文章推荐

发表回复

作者才能评论

评论列表(3条)

  • 秋易的头像
    秋易 2025年10月22日

    我是葡萄号的签约作者“秋易”

  • 秋易
    秋易 2025年10月22日

    本文概览:如何在初中几何教学中渗透数学思想数学思想方法是将数学知识转化为数学能力的桥梁,是解决数学问题的学科核心。现实中许多学生和教师觉得数学是一门枯燥无味的学科,老师教得很累,学生学得...

  • 秋易
    用户102208 2025年10月22日

    文章不错《如何在初中几何教学中渗透数学思想》内容很有帮助

联系我们

邮件:葡萄号@gmail.com

工作时间:周一至周五,9:30-17:30,节假日休息

关注微信